Etikettarkiv: AstaZero

Fordonsdynamik för automatiserad körning

Onsdag 31 maj arrangerade svenska fordonsingenjörsföreningen, SVEA, ihop med SAFER och kompetenscentret ECO2 årets seminarium, denna gång med temat fordonsdynamik för automatiserad körning [1]. Här kommer ett kort referat från seminariet.

Malte Rothämel från Scania pratade om behovet av redundans i chassisystemen när föraren inte längre finns redo att ta över, och visade exempel från tunga fordon med en aktiv styrnings-aktivator med dubbla elmotorer, och en bromsaktivator placerad direkt vid bromspedalen – bromssystemet är i övrigt redan redundant.

Per Ola Fuxin och Matthijs Klomp från Volvo Cars föredrog Volvos utveckling avseende förarstödssystem, från tidiga ABS-funktioner via många TBF (TreBokstavsFörkortningar) till dagens Pilot Assist. Målet är att skapa en ”sömlös” körupplevelse, där alla funktioner samspelar optimalt. Pilot Assist är i princip en vidareutveckling från adaptiv farthållare, ACC, där bilen också kan hålla sig i filen i farter upp till 130 km/h – men fortfarande är föraren ansvarig och måste hålla minst en hand på ratten (utom vid kökörning i lågfart). Detta eftersom systemet (ännu) inte kan identifiera alla objekt. Noterbart också att Volvos hybridbilar har ”by-wire”-bromsar och att alla deras framtida bilar också kommer att ha det.

Fredrik Bruzelius från VTI gjorde en översikt av resultaten från Wanna Svedbergs utredning av rättsliga principer med automatiserade fordon som vi skrivit om tidigare. Det är då viktigt att skilja på civilrätt och brottmål. I civilrätt, där man alltså ”stämmer” någon, kan ansvaret ligga på en juridisk person, till exempel en fordonstillverkare. Men i brottmål, där alltså ett brott mot trafiklagstiftningen skett, måste det (i Sverige) vara en fysisk person som är ansvarig. Detta ställer förstås till det för helt självkörande bilar (SAE-nivå 4 och 5). Ett förslag är att skapa en ”kontrollcentral” med operatörer som ger godkännande för start av varje enskild automatiserad körning (se t.ex. GMs gamla reklamfilm).

Peter Nilsson från Volvo GTT och Chalmers redogjorde för sitt projekt där man studerat principerna för hur man ska reglera långa fordonskombinationer vid körning i multipla filer. Långa fordon har ofta problem att byta fil i tät trafik och kan då tvingas till att ”bryta sig in” i nästa fil. Denna situation måste även framtida automatiserade långa lastbilar kunna hantera.

Jim Crawley från Haldex Brakes gjorde en djupdykning i ABS-reglering och visade hur deras nya snabba reglerventil kan både ge kortare bromssträckor men också spara energi och med separata enheter kan ge redundant reglering av avancerade funktioner för t.ex. automatiserade fordon.

Niklas Lundin från Asta Zero berättade om utmaningarna med testning både av aktiva säkerhetsssystem med alla varianter, och automatiserade fordon. De senare innebär en betydligt komplexare testning med tusentals testfall där det i praktiken är omöjligt att testa alla. Grundprincipen är då att genomföra huvuddelen av testerna med modeller som valideras med tester. Niklas nämnde också ett tänkbart cyberhot: om någon planterar falsk kartinformation så kan fordonen svänga av vägen för att de tror att det finns en anslutande väg där. Även sådana situationer måste man kunna säkra med testningen.

Slutligen berättade Lars Drugge från KTH om ITRLs plattformar, RCV och RCV-E1/-E2, som kontinuerligt utvecklas nu även med LIDAR, radar och kamera föru atomatiserad körning.

Totalt sett en givande dag som gick lite mer på djupet än många andra seminarier. (Dessutom tack till Mattias Lidberg som visade vad alla fordonsingenjörer med självaktning alltid måste bära med sig!)

Källor

[1] SVEA FORDON: Seminarie Vehicle Dynamics for Automated Driving Länk

Olli pratar med sina passagerare

Startupföretaget Local Motors från Washington DC och IBM har påbörjat ett samarbete kring självkörande fordon [1].

Local Motors har utvecklat ett pendelfordon (minibuss) kallat Olli som kan transportera upp till 12 passagerare. Det är till stor del byggt av delar skapade med hjälp av 3D-skrivare.

För att skapa transparens mot fordonets passagerare och göra deras resa mer personlig, har IBM utvecklat ett gränssnitt baserat på deras kognitiva dator Watson. Det möjliggör en verbal kommunikation mellan passagerarna och fordonet. En passagerare kan exempelvis trycka på en knapp och fråga Olli varför det saktar ner, eller om det kan köra till andra sidan av staden. Den här egenskapen väntas öka tilltro till självkörande fordon.

Olli hade premiär igår och kommer att testas i National Harbor i Washington DC under sommaren. Senare under året kan det komma att testas i Miami och Las Vegas.

Egen kommentar

Att skapa tilltro till automatiserade fordon genom att tillåta transparens och ”insyn” i hur systemet fungerar har också adresserats av andra aktörer. Googles egendesignade bil är exempelvis utrustad med en stor LCD skärm som visar till passagerarna objekt i omgivningen som bilen är medveten om. I Delphis prototyp används mittskärmen för att visa framkamerans vy samt att visa bilens planerade färdväg, trafikljus, och viktiga trafikskyltar i den. Forskningsprojektet AIMMIT har studerat sambandet mellan vår tilltro till automatiserade fordon och möjligheten att påverka deras taktiska beslut  (t.ex. omkörning).  Det som är unikt för Olli är att den kan ha muntlig konversation med passagerarna.

Det är dock inte bara kommunikationen inne i fordonen som är viktig, utan också extern kommunikation. Detta framgår av exempelvis Googles, Mercedes och Nissans prototyper som stödjer samverkan med oskyddade trafikanter. Som vi rapporterat om tidigare är extern kommunikation ett ämne som vi på Viktoria utforskar tillsammans med våra industri- och akademipartners. I nästa steg kommer vi utföra experiment på testbanan AstaZero.

Om ni är nyfikna på våra resultat om extern kommunikation samt om taktiska beslut från AIMMIT så får ni gärna höra av er till mig.

Källor

[1] Davies, A., Wired. IBM’s Watson Lets You Talk to Your Self-Driving Car. 2016-06-16 Länk

Problem med cyklister

Cyklister utgör ett stort problem för automatiserade fordon. Bilar blir förvirrade av dem eftersom deras beteende är ganska individuellt. Ibland beter de sig som fotgängare, och ibland till och med som bilar, förklarade Renault-Nissan chef Carlos Ghosn under Consumer Electronic Show (CES) i januari [1].

Att detta är ett påtagligt problem bekräftas också av Toyotas senaste arbete inom området [2]. För att kunna utföra tester med automatiserade fordon och cyklister har Toyota Collaborative Safety Research Center (TCSRC) nämligen utvecklat en testcykel och en testcyklist.

Testcykeln är baserad på en 26-tums mountainbike som är den mest populära vuxna cykel som säljs i USA. Den förflyttas med hjälp av en liten släde som tillåter krockhastigheter upp till 60 km/h. Testcyklisten är gjord av material som påminner om huden på en mänsklig cyklist. Detta för att kunna utvärdera hur väl den detekteras av radar.

Detaljer om det hela kommer att presenteras i april under World Congress of the Society of Automotive Engineers i Detroit.

Egen kommentar

Testanläggningen AstaZero utanför Borås har också en testcykel och cyklist som används bl.a. vid EuroNCAP-provning. Det återstår att se skillnader och likheter mellan dessa och Toyotas nya cykel och cyklist.

Källor

[1] Reid, D., CNBC. Driverless cars still confused by cyclists: Renault CEO. 2016-01-08 Länk

[2] Glaskin, M., Cyckling Weekly. Toyota create ‘crash test cyclist’ to help develop driverless cars. 2016-02-10 Länk

Robotstyrda Volvo-lastbilar för testning av säkerhetssystem

Videoserien Trucks Anatomy med journalisten Peter Sundfeldt har besökt testbanan AstaZero och fått se hur Volvo Trucks testar sin kollisionsvarning med nödbroms. Detta görs med hjälp av en ny testmetod där lastbilen körs av en robot.

Exakta testresultat är viktiga för utvecklingen av aktiva säkerhetssystem och genom att använda robotar i stället för mänskliga förare uppnås bättre precision och repeterbarhet.

Volvos kollisionsvarning med nödbroms är standard i alla Volvo FH-modeller. Från och med november är det lagkrav i Europa att alla nya lastbilar ska utrustas med den här typen av system.

Här kan ni se hela episoden.

Elektronik i Fordon 2015

22-23 april hölls årets Elektronik i Fordon i Svenska Mässan, Göteborg, med ca 330 deltagare. Första dagens program var gemensamt medan andra dagen var uppdelad i spåren Elektronik & arkitektur, Säkerhet, Transmission & drivlina, Tunga fordon samt Test & validering. Automatisering av fordon fanns med i samtliga delar, mer eller mindre.

Flera presentationer behandlade automatisering med fokus på uppkoppling. Redan idag är de flesta lastbilar i Europa uppkopplade på något sätt, även om de ännu inte delar data med varandra så mycket. Uppkoppling och delning av data möjliggör nya tjänster men skapar också utmaningar för företagen i att hitta lämpliga affärsmodeller. Fordonstillverkarna funderar också på hur mycket de ska öppna upp sig och t.ex. ge tredjepartsutvecklare tillgång till insamlade data. Nya aktörer kommer, frågan är hur mycket man vill hjälpa dem.

Annars fokuserar lastbilssidan mycket på konvojkörning, eller ”platooning”. Tanken är att minska bränsleförbrukningen genom att köra lastbilarna nära efter varandra och få aerodynamiska vinster. Eftersom bränslekostnaden utgör ungefär 40 % av den totala kostnaden för ett åkeri så finns det pengar att spara. Dagens förare gör också detta manuellt och kortare stunder. Med automatisering så skulle man kunna köra med kortare avstånd och längre tid. Om bilarna samtidigt är uppkopplade kan man göra funktionen bättre, bland annat genom att planeringshorisonten flyttas längre bort. Men samtidigt så känner förarna tveksamhet, när de tappar sikt och tvingas förlita sig på ett system. Ofta har man valt chaufförsyrket för att känna sig fri. Ett annat potentiellt problem som nämndes var att bilarna tvingas till frekventa inbromsningar om man ligger nära varandra, vilket leder till energiförluster som äter upp en del av de aerodynamiska vinsterna.

På systemsidan handlar det mycket om att kunna samla in och hantera stora mängder data. Inte minst videoströmmar från kameror kräver mycket bandbredd och dagens fordonsinterna kommunikationsbussar kommer kanske inte att räcka till.

Alla funktioner behöver inte nya sensorer. Volvo Cars visade en lågfriktionsvarning som bygger på information från befintliga källor inklusive informationsutbyte med såväl väghållare, myndigheter som andra fordon. Samma princip kan användas även för andra funktioner som t.ex. att varna för utryckningsfordon och ge information vart man ska styra för att ge dem fri väg, koordinera vävning vid trafikmot eller i framtiden koordinera automatiserade fordon. Den här typen av system brukar kallas kooperativa informations- och kommunikationssystem eller C-ITS. Konvojkörning med uppkopplade och samverkande fordon som nämndes ovan hör också dit.

En annan fråga som togs upp var hur man ska kunna verifiera och validera självkörande fordon. Att köra fältprov skulle kräva att man köra miljardtals km vilket inte är genomförbart. Ett alternativt koncept som studeras är att istället försöka identifiera kritiska situationer från bland annat olycksdatabaser och fältprov och därefter simulera dessa för att se hur det tekniska systemet hanterar dem. Simuleringarna kan då blanda verkliga inspelade data med simulerade så att man till exempel kan lägga till en simulerad älg. Man kan sedan göra snabba mjukvarujusteringar och testa igen. Problemet här blir istället att veta att man hittat tillräckligt många kritiska situationer.

Hur önskvärda automatiserade fordon är och hur man kan ta reda på det har adresserat inom forskningsprojektet MODAS. Drivkrafterna är säkerhet, bekvämlighet, effektivitet och miljövänlighet. Men för att få ut de positiva effekterna krävs användare och system i samverkan. Om man till exempel inte känner tillit till systemet så slappnar man inte av och använder tiden till annat. Undersökningar man gjort visar att det är ungefär lika mellan människor som är positiva till automatisering och de som är skeptiska och vill ha kontroll och köra själva. Bland annat hörde majoriteten av lastbilsförarna till den senare gruppen.

Något annat som diskuterats är vikten av skalbarhet. Det är viktigt att sensorer och tillhörande mjukvara är uppbyggda på ett sätt som möjliggör att de lätt kan anpassas till olika typer av fordon. Ett avancerat kamerasystem som används i premiumbilar ska exempelvis på ett enkelt sätt kunna konfigureras om för en billigare bil.

Man visade också studier av elmotorer i elfordon som kan användas som aktuatorer för aktiv säkerhet. Eftersom elmotorerna har betydligt snabbare respons än förbränningsmotorer och dessutom har god reglerbarhet så kan man till exempel använda dem för att gasa på eller flytta bilen framåt vid risk för en kollision bakifrån.

Ett annat ämne som togs upp i flera föredrag var informationssäkerhet och standarden för funktionell säkerhet (ISO 26262). Man måste kunna säkerställa att den avancerade tekniken i automatiserade fordon alltid uppför sig som det ska och att den lyckas hantera oförutsedda händelser, både i och utanför fordonet. ISO 26262 är inte utvecklad med detta i åtanke och för närvarande är dess begränsningar ganska okända.

Slutligen kan vi också nämna att ett nytt projekt kallat COPPLAR har annonserats. Projektet är för närvarande under uppstart och kommer involvera flera parter, däribland Chalmers. Det går ut på att utveckla teknik för automatiserad körning i stadsmiljö, som utöver bilbaserade sensorer involverar trådlös kommunikation (V2X). Två bilar kommer att utrustas med den utvecklade tekniken som sedan ska utvärderas på testanläggningen AstaZero.

Världspremiär för testbanan AstaZero

I går var det världspremiär för testanläggningen AstaZero som invigdes av statssekrerare Håkan Ekengren och Maria Khorsand, vd för SP Sveriges Tekniska Forskningsinstitut [1].

AstaZero ligger i Hällered utanför Borås och omfattar en yta på ca två miljoner kvadratmeter. Där ryms en rad olika trafikmiljöer, från tätbebyggt område till landsväg och motorväg, vilket möjliggör tester involverandes olika trafikslag och trafiksituationer.

AstaZero anses vara världens första fullskaliga testanläggning med fokus på utvärdering av säkerhetssystem. Det är bland annat automatiserade och uppkopplade fordon som kommer att testas där. Några journalister och andra som närvarade invigningen fick chans att testa automatiserad körning i en prototypbil.

Anläggningen är byggd genom ett samarbete mellan industri, akademi och samhälle. Den ägs av Chalmers och SP Sveriges tekniska forskningsinstitut. Den är öppen för alla, men kommer till en stor del att nyttjas av fordonstillverkare.

Källor

[1] Hugo, L., GP. Krockar för bättre trafiksäkerhet. 2014-08-21. Länk